
Information Systems 119 (2023) 102287

A
0

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

DB+-tree: A new variant of B+-tree for main-memory database systems
Yongsik Kwon a,b, Seonho Lee b, Yehyun Nam b, Joong Chae Na c, Kunsoo Park b, Sang K. Cha b,
Bongki Moon b,∗

a SAP Labs Korea, 235 Banpo-daero, Seocho-gu, Seoul, 06578, South Korea
b Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
c Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, South Korea

A R T I C L E I N F O

Keywords:
B+-tree
Branching algorithm
Point search
Range search
Update operations
Distinction bit slice
Trie

A B S T R A C T

The B-tree and its variants are an indispensable tool for database systems and applications. Hence the efficiency
of the B-tree is one of the few critical factors that determine the performance of a database system. In main-
memory database systems, the computational overhead intrinsic in the B-tree algorithms for branching becomes
the dominant factor in performance. In this paper, we propose yet another but disruptive variant of the B+-
tree called the DB+-tree that redesigns the node structure for faster branching operations. The novel branching
algorithm of the DB+-tree can be implemented in an 𝑂(1) number of SIMD and other sequential instructions,
which supports fast branching, and this leads to efficient point search, range search, and update operations.
1. Introduction

Since it was invented by Bayer and McCreight [1] a half century
ago, the B-tree and its variants have been an indispensable tool for
database systems and applications. Hence the efficiency of the B-tree
is one of the few critical factors that determine the performance of a
database system that relies on it for indexing and data access methods.
The traditional optimization methods are centered around maintaining
the highest possible fanout of the B-tree so that the number of I/O
operations required per database operation can be minimized. Exam-
ples include finding the optional node size, compressing index entries
by adopting prefix or partial keys, and reducing the latency of I/O
operations by bulky read and write operations. For a database system
that manages all or most of the data objects in main memory, however,
we have come to realize that the computational overhead intrinsic in
the B-tree algorithms becomes the dominant factor in performance. To
demonstrate the point, we have profiled the runtime of the B+-tree
(the most popular variant of the B-tree) for point search operations.
The result of profiling is shown in Fig. 1, where branching means the
cumulative cost of finding the correct child of an internal node, and
node access means the cumulative cost of fetching the correct child
node. When the index keys are short (8B), about 40% of search time
is spent on branching. The cost of branching grows even larger for
long keys (128B). The trend is still the same for the partial key B-tree
(pkB-tree) [2], which is known for its efficient branching for long keys.

∗ Corresponding author.
E-mail addresses: yong.sik.kwon@sap.com (Y. Kwon), shlee2@theory.snu.ac.kr (S. Lee), yhnam@theory.snu.ac.kr (Y. Nam), jcna@sejong.ac.kr (J.C. Na),

kpark@theory.snu.ac.kr (K. Park), chask@snu.ac.kr (S.K. Cha), bkmoon@snu.ac.kr (B. Moon).

In this paper, we propose yet another but disruptive variant of
the B+-tree that redesigns the node structure for faster branching
operations. In our index called the DB+-tree (which is short for D-bit B+-
tree), we store partial information of the keys in a node, which is called
the distinction bit slice (D-bit slice for short), which leads to efficient
search and update operations. More specifically, our contributions are
as follows.

• Unlike the B+-tree (or its variants), the branching algorithm of the
DB+-tree based on D-bit slices does not have loops, but it consists
of an 𝑂(1) number of SIMD and other sequential instructions,
irrespective of the key length. Also, our branching algorithm
uses key pointer dereferencing less frequently, especially when
compared to the pkB-tree. As shown in Fig. 1, the branching time
of the DB+-tree is significantly smaller than those of the other
B+-tree variants, which leads to fast point search. Specifically,
the DB+-tree was faster for point searches than the B+-tree up
to 350% (on average 230%), and faster than the pkB-tree up to
280% (on average 170%) in our experiments.

• In range search, the D-bit information enables us to determine
whether all the keys in a leaf node are within the search range
by a simple test. For range searches, the DB+-tree outperformed
the B+-tree by up to 670% (on average 290%) and the pkB-tree
by up to 170% (on average 130%).

• In the D-bit slices, some bits of the keys can remain unspecified,
which allows us to perform local changes in the D-bit information,
vailable online 21 September 2023
306-4379/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.is.2023.102287
Received 17 March 2022; Received in revised form 17 August 2023; Accepted 18 S
eptember 2023

https://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
mailto:yong.sik.kwon@sap.com
mailto:shlee2@theory.snu.ac.kr
mailto:yhnam@theory.snu.ac.kr
mailto:jcna@sejong.ac.kr
mailto:kpark@theory.snu.ac.kr
mailto:chask@snu.ac.kr
mailto:bkmoon@snu.ac.kr
https://doi.org/10.1016/j.is.2023.102287
https://doi.org/10.1016/j.is.2023.102287
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2023.102287&domain=pdf

Information Systems 119 (2023) 102287Y. Kwon et al.

a

W

d

b
p
t

2

B
m
r
o
i
p
t
r
k

t
t
p
B
t
f
e
𝑂
𝑂

3

D
k
a
n
o

L
q
m

D
a

𝐷

i
W
i
d
c

Frequently used notations

𝑀 Maximum number of keys in a node
𝐾𝑖 Key stored in a node
D-bit(𝛼, 𝛽) Distinction bit position of 𝛼 and 𝛽
𝐷𝑖 Distinction bit position of 𝐾𝑖−1 and 𝐾𝑖
𝐷𝑚𝑖𝑛 Minimum value of 𝐷𝑖’s
 Position set including all 𝐷𝑖’s
DS𝑖, 𝑝DS𝑖 D-bit slice and partial D-bit slice of 𝐾𝑖 for 
DS(𝑄) D-bit slice of 𝑄 for 

when there are insert or delete operations of keys. For insertions
and deletions, the DB+-tree was faster than the B+-tree up to
350% (on average 250%), and faster than the pkB-tree up to
160% (on average 140%).

Organization. The rest of the paper is organized as follows. Section 2
gives basic definitions and related work. Section 3 presents an overview
of the DB+-tree. Section 4 describes a novel branching algorithm for
the DB+-tree. Section 5 presents search and update operations based on
the branching algorithm. Section 6 presents the results of performance
evaluation, and we conclude in Section 7.

2. Preliminaries

The properties of the B+-tree that are needed to describe our index
re as follows.

1. Each node 𝑥 has 𝑥.𝑛 sorted keys 𝑥.𝐾1, 𝑥.𝐾2,… , 𝑥.𝐾𝑥.𝑛, where
𝑥.𝑛 ≤ 𝑀 , the maximum number of keys in a node. For simplicity
of description, we denote by 𝑥.𝐾0 the largest key in the left
sibling of 𝑥.

2. Each internal node 𝑥 has 𝑥.𝑛 pointers 𝑥.𝐶1, 𝑥.𝐶2,… , 𝑥.𝐶𝑥.𝑛 to its
children. Any key 𝑘 in the subtree rooted at 𝐶𝑖 satisfies 𝑥.𝐾𝑖−1 <
𝑘 ≤ 𝑥.𝐾𝑖 (1 ≤ 𝑖 ≤ 𝑥.𝑛), and the largest key 𝐶𝑖.𝐾𝐶𝑖 .𝑛 in 𝐶𝑖 is equal
to 𝑥.𝐾𝑖.

e omit node 𝑥 in notations if it is not confusing.
We consider key values as binary strings throughout this paper. The

istinction bit position1 of two binary strings 𝑆1 and 𝑆2, which is denoted
by D-bit(𝑆1, 𝑆2), is defined as the most significant bit position where the
two strings differ [3]. Bit positions start with 0, and the bit of a binary
string 𝑆 in bit position 𝑖, denoted by 𝑆[𝑖], will be called the (𝑖 + 1)st
it of the key (i.e., the bit in bit position 0 is the first bit, the bit in bit
osition 1 is the second bit, etc.). The first bit (i.e., in bit position 0) is
he most significant bit in the keys.

.1. Related work

The length of keys has a direct impact on the performance of the
-tree, because the fanout is inversely proportional to that. In a main-
emory database system, the index keys and their corresponding data

ecords are kept together in the main memory. This presents new
pportunities for addressing the problem of indexing long keys. The
ndirect-key approach [7] eliminates the duplicate keys by storing a
ointer to the data key instead of the index key in the B-tree. Although
his approach makes the index entries fixed-length, it increases the
atio of cache misses. The prefix-key approach [8] compresses the long
eys by retaining the minimal prefixes required for comparison. This

1 Ferguson [3] used the term distinction bit ; Fredman and Willard [4,5]
distinguishing bit ; Binna et al. [6] discriminative bit.
2

d

approach can make the keys shorter but the prefixes will be variable-
length and are subject to frequent recomputation by insertions and
deletions. In the partial-key approach [2], an index entry stores the
offset of the first distinctive bit and a fixed number of consecutive bits
from the offset as well as the pointer to the data record. Thus, the
index entries can be fixed-length and the B-tree can be more memory
efficient. However, if a comparison cannot be resolved by the partial
keys, dereferencing the pointer is required.

The B-tree has also been studied heavily for its architectural adap-
tation. Rao and Ross’s CSS-tree [9] and CSB+-tree [10] are cache-
conscious variants of the B-tree, and Chen et al.’s pB+-tree [11] and
fpB+-tree [12] optimize the performance of the B-tree by prefetching.
Zhang et al. parallelize the B-tree operations with SIMD and GPU [13,
14]. Levandoski et al.’s Bw-tree [15] and Na et al.’s IPL B-tree [16]
are proposed as flash-aware B-tree variants. Kim et al.’s FAST [17] and
Yamamuro et al.’s VAST-tree [18] are a binary tree optimized for the
features of the modern architecture such as page size, cache line size,
and SIMD width.

The trie and its variants [19,20] are traditionally considered in-
memory search structures, but in main-memory database systems they
are viable options for indexes. Recently, many trie-variant indexes have
been proposed such as Boehm et al.’s Generalized Prefix Tree [21],
Kissinger et al.’s KISS-tree [22], Leis et al.’s Adaptive Radix Tree
(ART) [23,24], Zhang et al.’s SuRF [25], and Binna et al.’s Height
Optimized Trie (HOT) [6]. ART is a trie where the size of each node
is optimized adaptively, and HOT combines multiple nodes of a binary
trie into compound nodes such that the height of the index is optimized.
In particular, HOT is a seminal work in main-memory indexes which
not only introduces the layout of partial keys in a node but also
outperforms other state-of-the-art indexes.

There has been research in the theory community [4,5,26,27] to
improve 𝑂(log𝑁) time bound for point search in an index, where 𝑁 is
he total number of keys in the index. The van Emde Boas tree [26,27]
akes 𝑂(log log |𝑈 |) time for point search, where 𝑈 is the universe of all
ossible keys, and it requires 𝑂(|𝑈 |) space. The fusion tree [4,5] is a
+-tree in which branching in a node takes 𝑂(1) time. Since the fusion
ree is a B+-tree, its height is 𝑂(log𝑀 𝑁). By choosing 𝑀 = log2 𝑁 , the
usion tree obtains 𝑂(log𝑁∕ log log𝑁) time for point search. However,
ach node of the fusion tree requires a lookup table of size 𝑀2 to get
(1) branching time, and updating the lookup table in a node takes
(𝑀4) time.

. Overview of new B+-tree

The DB+-tree is a variant of the B+-tree. The tree structure of the
B+-tree is the same as that of the B+-tree; only the information about
eys inside a node is different for fast branching. A novel branching
lgorithm using this information, which can be implemented in an 𝑂(1)
umber of SIMD and other sequential instructions, is the key ingredient
f the DB+-tree.

Suppose that 𝑛 sorted keys 𝐾1,… , 𝐾𝑛 are stored in an internal node.
et 𝐾0 be the largest key in the left sibling of the internal node. If a
uery key 𝑄 arrives at the internal node during a search operation, it
eans that 𝑄 satisfies 𝐾0 < 𝑄 ≤ 𝐾𝑛.

-bit slice. For fast branching, each node 𝑥 of the DB+-tree contains
uxiliary information called the D-bit slices. Let

𝑖 = D-bit(𝐾𝑖−1, 𝐾𝑖) for 1 ≤ 𝑖 ≤ 𝑛,

.e., the distinction bit position of two adjacent keys in sorted order.
e call 𝐷𝑖’s the D-bit positions of node 𝑥. Let  be an integer set

ncluding all the D-bit positions of 𝑥. (Note that  may include some
ummy positions which are not the D-bit positions of 𝑥.) Let DS𝑖 be the
oncatenation of the bits of 𝐾𝑖 at the positions in , which is called the

istinction bit slice (or D-bit slice) of 𝐾𝑖 for .

Information Systems 119 (2023) 102287Y. Kwon et al.
Fig. 1. Branching and node access in point search operations.
Fig. 2. Information on keys stored in a node when  = {0, 2, 3, 5, 7, 9}. Bold black bits
represent bits at branching positions of each key, and blue bits or red bits represent
bits at non-branching positions of . Red bits in (d) represent unknown bits. In (a), a
red rectangle indicates substrings of keys representing the label of an identical edge in
the binary Patricia trie 𝑇 of (c), and a gray box indicates the distinction bit position of
two adjacent keys. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Example 3.1. In Fig. 2(a), the D-bit positions are 0, 2, 3, 7, and 9.
When  = {0, 2, 3, 5, 7, 9}, therefore, position 5 is a dummy position. In
Fig. 2(b), DS3 is 101 001, which is the concatenation of the bits of 𝐾3
at the positions in .

Dummy positions make it possible to update  and D-bit slices
lazily. Suppose that 𝐾8 is deleted in Fig. 2(a). Then position 3 is not
a D-bit position any more but a dummy position. By allowing dummy
positions, we can keep  as it is and thus we do not need to modify
D-bit slices other than DS8, which is deleted. When  has too many
dummy positions, dummy positions are eliminated from , and D-bit
slices are updated accordingly. We will describe the details in Section 5.

In addition to the properties of the B+-tree in Section 2, the DB+-tree
has the following property:

• Each node 𝑥 has a position set 𝑥. including all the D-bit posi-
tions of 𝑥, and the D-bit slices for 𝑥. (i.e., 𝑥.DS1, 𝑥.DS2,… , 𝑥.
DS).
3

𝑛

The D-bit slices are closely related to the binary Patricia trie 𝑇
representing the keys [20]. Fig. 2(c) shows the binary Patricia trie of
the keys in Fig. 2(a). A rectangle box in Fig. 2(a) indicates substrings
of keys representing the label of an identical edge in 𝑇 . For each key
𝐾𝑖, a position 𝑝 is called a branching position if there exists a key 𝐾𝑗
(𝑖 ≠ 𝑗) such that D-bit(𝐾𝑖, 𝐾𝑗) = 𝑝, and it is called a non-branching
position otherwise. The bits in the branching positions of 𝐾𝑖 are used
for branching when traversing down 𝑇 with 𝐾𝑖. In Fig. 2, the branching
positions of 𝐾3 are {0, 2, 7, 9} and the other positions are the non-
branching positions of 𝐾3. Note that all the branching positions of a
key 𝐾𝑖 are included in  and thus the D-bit slices contain sufficient
information necessary for branching. We will describe a branching
algorithm using the D-bit slices in Section 4.

Search and update operations (i.e., point search, range search, in-
sertion, and deletion) in the DB+-tree which are based on the branching
algorithm will be presented in Section 5.

4. Branching algorithm

In this section, we show how to solve the branching problem in a
node 𝑥.

Branching problem. Given the sorted keys 𝐾0, 𝐾1,… , 𝐾𝑛 in node 𝑥 and
a query key 𝑄 (𝐾0 < 𝑄 ≤ 𝐾𝑛), find 𝑏 such that 𝐾𝑏−1 < 𝑄 ≤ 𝐾𝑏.

4.1. Basic algorithm

The branching problem can be solved by finding the longest prefix
𝑄′ of query key 𝑄 that matches a path from the root in 𝑇 , the binary
Patricia trie of the keys in node 𝑥. 𝑄′ can be found by computing
lcp(𝑄,𝐾𝑖) (0 ≤ 𝑖 ≤ 𝑛) and taking the maximum of them, where lcp(𝛼, 𝛽)
denotes the length of the longest common prefix of 𝛼 and 𝛽. When keys
are long, however, it is expensive to compute lcp(𝑄,𝐾𝑖) for all keys.

Our branching algorithm uses the D-bit information to find 𝑄′

and then find keys whose prefixes are 𝑄′. The following is our basic
branching algorithm.

1. Find 𝑞 such that lcp(DS(𝑄),DS𝑞) is maximum for 1 ≤ 𝑞 ≤ 𝑛, where
DS(𝑄) is the D-bit slice of 𝑄 for . (If there are many such 𝑞’s,
the algorithm works with any 𝑞.)

2. Find 𝐷 ← D-bit(𝑄,𝐾𝑞) by comparing 𝑄 and 𝐾𝑞 .
3. Find 𝑏 such that 𝐾𝑏−1 < 𝑄 ≤ 𝐾𝑏 as follows. If 𝑄 = 𝐾𝑞 , 𝑏 is 𝑞; If

𝑄 > 𝐾𝑞 , 𝑏 is the smallest integer > 𝑞 such that 𝐷𝑏 ≤ 𝐷; If 𝑄 < 𝐾𝑞 ,
𝑏 is the largest integer ≤ 𝑞 such that 𝐷𝑏 ≤ 𝐷.

Since the D-bit slices contain bits at all the branching positions, Step
1 finds a key 𝐾𝑖 such that lcp(𝑄,𝐾𝑖) is maximum, which is proven in
Theorem 4.1.

Example 4.1. Given the keys and the D-bit slices in Fig. 2, for each
query 𝑄 below, the basic algorithm works as follows.

Information Systems 119 (2023) 102287Y. Kwon et al.

i

L

P

L
D

(a) 𝑄 = 11011 00010 (i.e., DS(𝑄) = 101000). Then 𝑞 = 2 in Step 1,
𝐷 = 4 in Step 2 (i.e., 𝑄′ = 1101), and 𝑏 = 6 in Step 3. Note that
𝐾2,… , 𝐾5 have 𝑄′ = 1101 as their prefixes, and 𝐾5 < 𝑄 ≤ 𝐾6
(i.e., 𝑏 = 6 means the end of the keys having 𝑄′ = 1101 as their
prefixes).

(b) 𝑄 = 10100 10111 (i.e., DS(𝑄) = 110111). Then 𝑞 = 7, 𝐷 = 1, 𝑏 = 2,
and thus 𝐾1 < 𝑄 ≤ 𝐾2.

(c) 𝑄 = 00011 10011 (i.e., DS(𝑄) = 001101). Then 𝑞 = 1 (due to the
condition 𝑞 ≥ 1), 𝐷 = 7, 𝑏 = 1, and thus 𝐾0 < 𝑄 ≤ 𝐾1.

The following lemmas and theorems show that the basic algorithm
s correct.

emma 4.1. D-bit(𝐾𝑖, 𝐾𝑗) = min𝑖<𝑘≤𝑗 𝐷𝑘 for all 0 ≤ 𝑖 < 𝑗 ≤ 𝑛.

roof. It follows from the definition of D-bit. □

emma 4.2. Let 𝑥1 and 𝑥2 be bit strings such that 𝑥1 < 𝑥2 and
-bit(𝑥1, 𝑥2) = 𝑐.

(1) If D-bit(𝑦, 𝑥1) > 𝑐, then 𝑦 < 𝑥2 and D-bit(𝑦, 𝑥2) = 𝑐.
(2) If D-bit(𝑦, 𝑥2) > 𝑐, then 𝑦 > 𝑥1 and D-bit(𝑦, 𝑥1) = 𝑐.

Proof. Since 𝑥1 < 𝑥2 and D-bit(𝑥1, 𝑥2) = 𝑐, the (𝑐 + 1)st bit of 𝑥1 is 0,
and that of 𝑥2 is 1.

(1) If D-bit(𝑦, 𝑥1) > 𝑐, the (𝑐 + 1)st bit of 𝑦 is 0, and thus 𝑦 < 𝑥2 and
D-bit(𝑦, 𝑥2) = 𝑐.

(2) If D-bit(𝑦, 𝑥2) > 𝑐, the (𝑐 + 1)st bit of 𝑦 is 1, and thus 𝑦 > 𝑥1 and
D-bit(𝑦, 𝑥1) = 𝑐. □

Theorem 4.1. The integer 𝑞 found in Step 1 of the basic algorithm satisfies
that D-bit(𝑄,𝐾𝑞) is maximum for 1 ≤ 𝑞 ≤ 𝑛.

Proof. Let 𝑑 be the first bit position where 𝑄 and 𝐾𝑞 differ, i.e.,
D-bit(𝑄,𝐾𝑞) = 𝑑. We show that it is maximum as follows. Consider
any key 𝐾𝑖 (1 ≤ 𝑖 ≤ 𝑛, 𝑖 ≠ 𝑞).

• If D-bit(𝐾𝑖, 𝐾𝑞) < 𝑑, then D-bit(𝑄,𝐾𝑖) < 𝑑 because the first 𝑑 bits
of 𝑄 are the same as those of 𝐾𝑞 .

• If D-bit(𝐾𝑖, 𝐾𝑞) > 𝑑, then D-bit(𝑄,𝐾𝑖) = 𝑑 because the (𝑑 +1)st bit
of 𝐾𝑖 is the same as that of 𝐾𝑞 , which is different from that of 𝑄.

• D-bit(𝐾𝑖, 𝐾𝑞) cannot equal 𝑑, which can be proved by contra-
diction. Suppose that D-bit(𝐾𝑖, 𝐾𝑞) = 𝑑. Then, 𝑑 is a distinction
bit position by Lemma 4.1 and thus it is part of the distinction
bit slices. Let 𝑙 be the position in DS(𝑄) corresponding to the
position 𝑑 in 𝑄. Since D-bit(𝑄,𝐾𝑞) = 𝑑 and D-bit(𝐾𝑖, 𝐾𝑞) = 𝑑,
the first 𝑙 bits of DS(𝑄), DS𝑞 , and DS𝑖 are the same, and we have
DS(𝑄)[𝑙] ≠ DS𝑞[𝑙] and DS𝑞[𝑙] ≠ DS𝑖[𝑙]. Therefore DS(𝑄)[𝑙] = DS𝑖[𝑙].
That is, lcp(DS(𝑄),DS𝑖) > lcp(DS(𝑄),DS𝑞), which contradicts the
fact that lcp(DS(𝑄),DS𝑞) is maximum.

Hence, D-bit(𝑄,𝐾𝑖) ≤ 𝑑 for all 1 ≤ 𝑖 ≤ 𝑛. □

Theorem 4.2. Step 3 of the basic algorithm finds 𝑏 such that 𝐾𝑏−1 <
𝑄 ≤ 𝐾𝑏. In addition, (1) when 𝑄 > 𝐾𝑞 , D-bit(𝐾𝑏−1, 𝑄) = 𝐷 and
D-bit(𝑄,𝐾𝑏) = 𝐷𝑏; (2) when 𝑄 < 𝐾𝑞 and 𝑏 > 1, D-bit(𝐾𝑏−1, 𝑄) = 𝐷𝑏
and D-bit(𝑄,𝐾𝑏) = 𝐷.

Proof. There are three cases in Step 3. If 𝑄 = 𝐾𝑞 , the theorem holds
trivially.

When 𝑄 > 𝐾𝑞 , we show that the integer 𝑏 in Step 3 satisfies
𝐾𝑏−1 < 𝑄 ≤ 𝐾𝑏, and D-bit(𝐾𝑏−1, 𝑄) = 𝐷 and D-bit(𝑄,𝐾𝑏) = 𝐷𝑏.

• For 𝑏 − 1, D-bit(𝐾𝑞 , 𝐾𝑏−1) > 𝐷 = D-bit(𝑄,𝐾𝑞) because D-bit(𝐾𝑞 ,
𝐾𝑏−1) = min𝑞<𝑘<𝑏 𝐷𝑘 by Lemma 4.1 and 𝐷𝑘 > 𝐷 (𝑞 < 𝑘 <
𝑏) by definition of 𝑏. Hence 𝐾 < 𝑄 and D-bit(𝐾 ,𝑄) =
4

𝑏−1 𝑏−1
𝐷 by Lemma 4.2(1) because 𝐾𝑞 , 𝑄,𝐾𝑏−1 correspond to 𝑥1, 𝑥2, 𝑦,
respectively (e.g., when 𝑄 = 11011 00010, 𝑞 = 2, 𝑏 − 1 = 5 in
Example 4.1a).

• For 𝑏, 𝐷𝑏 cannot equal 𝐷. (Suppose that 𝐷𝑏 = 𝐷. The (𝐷 + 1)st
bit of 𝐾𝑞 is 0, that of 𝑄 is 1, and that of 𝐾𝑏 must be 1. Thus
D-bit(𝑄,𝐾𝑏) > D-bit(𝑄,𝐾𝑞), a contradiction to Theorem 4.1.)
Since 𝐷𝑏 < 𝐷, D-bit(𝐾𝑞 , 𝐾𝑏) = min𝑞<𝑘≤𝑏 𝐷𝑘 = 𝐷𝑏 < D-bit(𝑄,𝐾𝑞) =
𝐷. Hence 𝑄 < 𝐾𝑏 and D-bit(𝑄,𝐾𝑏) = 𝐷𝑏 by Lemma 4.2(1)
because 𝐾𝑞 , 𝐾𝑏, 𝑄 correspond to 𝑥1, 𝑥2, 𝑦, respectively (e.g., when
𝑄 = 11011 00010, 𝑞 = 2, 𝑏 = 6 in Example 4.1a).

When 𝑄 < 𝐾𝑞 , the integer 𝑏 in Step 3 satisfies 𝐾𝑏−1 < 𝑄 ≤ 𝐾𝑏, and
D-bit(𝐾𝑏−1, 𝑄) = 𝐷𝑏 (if 𝑏 − 1 > 0) and D-bit(𝑄,𝐾𝑏) = 𝐷 as follows.

• For 𝑏, D-bit(𝐾𝑏, 𝐾𝑞) = min𝑏<𝑘≤𝑞 𝐷𝑘 > 𝐷 = D-bit(𝑄,𝐾𝑞). Therefore
𝐾𝑏 > 𝑄 and D-bit(𝐾𝑏, 𝑄) = 𝐷 by Lemma 4.2(2) because 𝑄,𝐾𝑞 , 𝐾𝑏
correspond to 𝑥1, 𝑥2, 𝑦, respectively (e.g., when 𝑄 = 10100 10111,
𝑞 = 7, 𝑏 = 2 in Example 4.1b).

• For 𝑏 − 1, we show that 𝑄 > 𝐾𝑏−1. If 𝑏 − 1 = 0, it holds
trivially since 𝑄 > 𝐾0 by the precondition of the branching
algorithm. Otherwise, 𝐷𝑏 cannot equal 𝐷. (Suppose that 𝐷𝑏 = 𝐷.
The (𝐷 + 1)st bit of 𝑄 is 0, that of 𝐾𝑞 is 1, and that of 𝐾𝑏−1
must be 0. Thus D-bit(𝑄,𝐾𝑏−1) > D-bit(𝑄,𝐾𝑞), a contradiction to
Theorem 4.1.) Since 𝐷𝑏 < 𝐷, D-bit(𝐾𝑏−1, 𝐾𝑞) = min𝑏≤𝑘≤𝑞 𝐷𝑘 =
𝐷𝑏 < D-bit(𝑄,𝐾𝑞) = 𝐷. Hence 𝑄 > 𝐾𝑏−1 and D-bit(𝑄,𝐾𝑏−1) =
𝐷𝑏 by Lemma 4.2(2) because 𝐾𝑏−1, 𝐾𝑞 , 𝑄 correspond to 𝑥1, 𝑥2, 𝑦,
respectively (e.g., when 𝑄 = 10100 10111, 𝑞 = 7, 𝑏 − 1 = 1 in
Example 4.1b). □

Algorithm 1: Branch(𝑥,𝑄)
Input: a node 𝑥 and a query key 𝑄
Output: largest integer 𝑏 such that 𝑥.𝐾𝑏−1 < 𝑄, and

𝐷 = max1≤𝑖≤𝑛(D-bit(𝑄, 𝑥.𝐾𝑖))
⊳ Step 1: Find 𝑞 such that lcp(DS(𝑄),DS𝑞) is
maximum.

1 Make 𝑛 copies of DS(𝑄);
2 for 1 ≤ 𝑖 ≤ 𝑛 do // SIMD
3 XOR𝑖 ← XOR(DS(𝑄),DS𝑖);
4 Find 𝑞 such that XOR𝑞 is minimum among XOR𝑖’s;
⊳ Step 2:

5 Find 𝐷 ← D-bit(𝑄,𝐾𝑞) by comparing 𝑄 and 𝐾𝑞 ;
⊳ Step 3: Find largest 𝑏 such that 𝐾𝑏−1 < 𝑄.

6 if 𝑄 = 𝐾𝑞 then 𝑏 ← 𝑞;
7 else
8 Make 𝑛 copies of 𝐷;
9 for 1 ≤ 𝑖 ≤ 𝑛 do // SIMD
10 if 𝐷𝑖 ≤ 𝐷 then 𝐶[𝑖] ← 1;
11 else 𝐶[𝑖] ← 0;
12 if 𝑄 > 𝐾𝑞 then
13 Find the smallest 𝑏 > 𝑞 such that 𝐶[𝑏] = 1 by shifting

left by 𝑞 and finding the first 1-bit position (if such
integer 𝑏 does not exist, 𝑏 is set to 𝑛 + 1);

14 else // if 𝑄 < 𝐾𝑞
15 Find the largest 𝑏 ≤ 𝑞 such that 𝐶[𝑏] = 1 by shifting

right and finding the last 1-bit position;

16 return (𝑏,𝐷);

4.2. Optimizations

We refine the basic algorithm for SIMD implementation. Algorithm
1 shows the detailed code of the basic algorithm using SIMD instruc-
tions. In Step 1, we use bitwise-XOR operations for computing the lcp’s.

Information Systems 119 (2023) 102287Y. Kwon et al.

w

s

P
o
w
i
v
T
s
s

E
F
2
b
b
a

p
a
i
0
p

w

E
c

C
b
s
(

T
f
b
t
o
n

l
p
m
a

E
a
D
c

r
N
L
D
e
a
W
c
b
c
a

4

w
n
i
S
a
w
f
t

s

In Step 2, we compare 𝑄 and 𝐾𝑞 and compute 𝐷 = D-bit(𝑄,𝐾𝑞), which
is the maximum among D-bit(𝑄,𝐾𝑖)’s. In Step 3, we use a bit array
𝐶[1..𝑛] where 𝐶[𝑖] is 1 if 𝐷𝑖 ≤ 𝐷, and 0 otherwise. When 𝑄 > 𝐾𝑞 ,

e compute the smallest 𝑏 > 𝑞 such that 𝐶[𝑏] = 1 by shifting left 𝐶
by 𝑞 to remove the elements whose indices are less than or equal to
𝑞 and finding the first 1-bit in the shifted 𝐶. If such 𝑏 does not exist,
then 𝑄 > 𝐾𝑛 and thus we set 𝑏 = 𝑛 + 1, which occurs in range search
presented in Section 5. When 𝑄 < 𝐾𝑞 , we similarly find the largest 𝑏 ≤ 𝑞
uch that 𝐶[𝑏] = 1. In this case, such 𝑏 must exist since 𝑄 > 𝐾0.

artial D-bit slice. When keys in a node are updated by insertion
r deletion, maintaining D-bit slices exactly may require key accesses,
hich cause cache misses. For example, inserting a new key 11010 01100

n Fig. 2(a) makes position 8 a new D-bit position and thus the bit
alues at position 8 of all the keys must be added into the D-bit slices.
o reduce key accesses, we use a partial version of D-bit slice, where
ome bits are allowed to be unspecified. More precisely, the partial D-bit
lice of 𝐾𝑖, denoted by 𝑝DS𝑖, is defined as follows:

1. For a branching position of 𝐾𝑖, 𝑝DS𝑖 has an exact value.
2. For a non-branching position of 𝐾𝑖, 𝑝DS𝑖 has an exact value or is

expressed as an unknown bit, which is represented as 0. Thus, for
a non-branching position, bit 0 of 𝑝DS𝑖 means that its real value
can be 0 or 1, while bit 1 means that its real value is 1.

3. For any 𝑗 ≠ 𝑖, if a substring 𝛼 of 𝑝DS𝑖 and a substring 𝛽 of 𝑝DS𝑗
are derived from the label of an identical edge in trie 𝑇 , then 𝛼
and 𝛽 are the same.

xample 4.2. Fig. 2(d) shows partial D-bit slices of the keys in
ig. 2(a), where unknown bits are indicated by red 0. For 𝐾𝑖’s (𝑖 =
,… , 5), bits in position 3 are all 1 but they are expressed as (unknown
it) 0 in 𝑝DS𝑖’s (the third bits). Note that it is possible that the third
its of 𝑝DS𝑖’s (𝑖 = 2,… , 5) are all 1, but it is not allowed that some bits
re 0 and the others are 1 by Condition (3) of 𝑝DS.

The notion of the partial D-bit slice was inspired by the sparse
artial key of HOT [6], but it is different from the sparse partial key
s follows. The bits at non-branching positions, marked in blue or red
n Fig. 2(d), are all 0 in the sparse partial keys, while these bits can be

or 1 in our partial D-bit slices. The advantages of using value 1 in
artial D-bit slices are twofold.

• When partial D-bit slices are newly computed in a node (e.g., for
bulk loading), we can do it by simply setting 𝑝DS𝑖 as DS𝑖 (D-bit
slice) because the exact D-bit slice is a special case of the partial
D-bit slice.

• The value 1 in partial D-bit slices leads to performance improve-
ment in unsuccessful searches, as described in Section 5.

Step 1 of Algorithm 1 works correctly with the partial D-bit slices,
hich we explain by the following example.

xample 4.3. Given the keys and the partial D-bit slices in Fig. 2,
onsider a query 𝑄 = 1101000101 (DS(𝑄) = 101011). When using the

D-bit slices DS𝑖’s, XOR5 = 000000 is the minimum among XOR𝑖’s (i.e.,
𝑞 = 5). We can get the same result using 𝑝DS𝑖’s. Let XOR′

𝑖 denote
XOR(DS(𝑄), 𝑝DS𝑖) to distinguish it from XOR𝑖 = XOR(DS(𝑄),DS𝑖). Since
the third bit of 𝑝DS5 = 100011 is different from real value 1, XOR′

5 =
001000. However, the third bit ‘1’ of XOR′

5 does not affect the result that
XOR′

5 is the minimum among XOR′
𝑖 ’s because the third bits of 𝑝DS𝑖’s

(𝑖 = 2,… , 5) are all 0 by Condition (3) of 𝑝DS.

ontiguous version. If the positions in  for a node 𝑥 are contiguous
it positions, the branching problem can be solved by the following
impler algorithm because the D-bit slice DS𝑖 of 𝐾𝑖 is a substring of 𝐾𝑖.
Notice that DS is used in this algorithm but not 𝑝DS .)
5

𝑖 𝑖 b
Table 1
Data structure of an internal node.

Member Description (size when 𝑀 = 16)

𝑛 The number of keys stored in the node (1B)
𝐾1 ,… , 𝐾16 𝐾𝑖 is the 𝑖th key itself or its embedded substring

(8B × 16)
𝐶1 ,… , 𝐶16 𝐶𝑖 is a pointer to the 𝑖th child (8B × 16)
ℎ𝑘𝑒𝑦𝑝𝑡𝑟 Pointer to the largest key 𝐾𝑛 (8B)
𝑛𝑒𝑥𝑡 Pointer to the next sibling (8B)
𝐷1 ,… , 𝐷16 𝐷𝑖 is the D-bit position of 𝐾𝑖−1 and 𝐾𝑖 (2B × 16)
𝐷𝑚𝑖𝑛 The minimum value of {𝐷1 ,… , 𝐷𝑛} (2B)
DS1 ,… ,DS16 DS𝑖 is the partial or contiguous D-bit slice of 𝐾𝑖

(2B × 16)
-positions and
-masks

Byte positions (1B × 16) and 8-bit masks (1B × 16)
for 

1. We find 𝑏 such that DS𝑏−1 < DS(𝑄) ≤ DS𝑏 using SIMD instruc-
tions as follows. First, make 𝑛 copies of DS(𝑄) and compute 𝐶[𝑖]
for 1 ≤ 𝑖 ≤ 𝑛, where 𝐶[𝑖] = 0 if DS𝑖 < DS(𝑄); 𝐶[𝑖] = 1 otherwise.
Then, find the first 1-bit position in 𝐶.

2. If DS(𝑄) = DS𝑏, we make a comparison of 𝑄 and 𝐾𝑏, and if
𝑄 > 𝐾𝑏, increase 𝑏 by one.

he contiguous version is more efficient than the basic algorithm as
ollows. Step 1 of the contiguous version is simpler than Step 1 of the
asic algorithm. The basic algorithm always makes a comparison of
wo full keys, while the contiguous version makes such a comparison
nly when DS(𝑄) = DS𝑏. Step 3 of the basic algorithm using 𝐷𝑖’s is not
ecessary in the contiguous version.

However, the contiguous version cannot solve the branching prob-
em when the positions in  are not contiguous, as shown in Exam-
le 4.4. When the positions in  are not contiguous, therefore, we
ust find 𝑞 such that D-bit(𝑄,𝐾𝑞) is maximum as in Step 1 of the basic

lgorithm.

xample 4.4. Given four keys (𝐾0,… , 𝐾3) = (0001, 1100, 1101, 1111)
nd  = {0, 2, 3}, (DS0,… ,DS3) = (001, 100, 101, 111). If 𝑄 = 1010, then
S(𝑄) = 110 and the contiguous version finds 𝑏 = 3. However, the
orrect answer is not 3, but 1.

To take advantage of the contiguous version of the branching algo-
ithm, we store D-bit slices as substrings of the keys if it is possible.
ote that the number of the D-bit positions at a node is at most 𝑛 ≤ 𝑀 .
et 𝐷𝑚𝑖𝑛 be the minimum D-bit position and 𝐷𝑚𝑎𝑥 be the maximum
-bit position. When the difference of 𝐷𝑚𝑖𝑛 and 𝐷𝑚𝑎𝑥 is less than or
qual to 𝑀 , we use the substring of 𝐾𝑖 of length 𝑀 starting at 𝐷𝑚𝑖𝑛
s the D-bit slice DS𝑖, that is,  = {𝐷𝑚𝑖𝑛, 𝐷𝑚𝑖𝑛 + 1,… , 𝐷𝑚𝑖𝑛 + 𝑀 − 1}.
e call it a contiguous D-bit slice. Note that no unknown bit is used in a

ontiguous D-bit slice. Then, we can use the contiguous version of the
ranching algorithm for a node storing the contiguous D-bit slices. We
all a node a contiguous node if the node stores a contiguous D-bit slice,
nd a non-contiguous node otherwise.

.3. Implementation details

Table 1 and Fig. 3 show the data structure of an internal node,
here 𝑀 is assumed to be 16. When keys are too long to store inside
odes, we embed a part of each key (8B from the byte containing 𝐷𝑚𝑖𝑛)
n a node to reduce cache misses due to the full key access. Thus, in
tep 2 of Algorithm 1, we first compare the embedded substring of 𝐾𝑞
nd the corresponding substring of 𝑄, and if they are the same, then
e compare the full 𝐾𝑞 and 𝑄. We can get the pointer to the full 𝐾𝑞

rom the child 𝐶𝑞 . Note that 𝐾𝑞 is the largest key in 𝐶𝑞 and the pointer
o the key is stored in 𝐶𝑞 (𝐶𝑞 .ℎ𝑘𝑒𝑦𝑝𝑡𝑟).

Since  is defined per node, extracting DS(𝑄) from query key 𝑄
hould be performed at each node. To extract DS(𝑄) fast, we maintain

yte positions (the -positions) to which bit positions in  belong, and

Information Systems 119 (2023) 102287Y. Kwon et al.
Fig. 3. Data structure for the D-bit information.
Fig. 4. -positions and -masks for  = {9, 33, 34, 39, 45}.
8-bit masks for the bytes (the -masks) at each node (see Fig. 4). The
structure of a leaf is also similar. Instead of children 𝐶1,… , 𝐶16, each
leaf has pointers 𝑅𝑖𝑑1,… , 𝑅𝑖𝑑16 to entries whose keys are 𝐾1,… , 𝐾16,
respectively.

We use four types of nodes: a contiguous internal node, a non-
contiguous internal node, a contiguous leaf, a non-contiguous leaf. In
our implementation, we set 𝑀 = 16 and allocate 384 bytes to each type
of node except for a contiguous leaf. For a contiguous leaf, we exclude
keys 𝐾1,… , 𝐾16 to reduce the space and allocate 256 bytes.

Since 16 DS𝑖’s (or 𝐷𝑖’s), each of which is 2 bytes long, correspond to
SIMD width 256 (32 bytes), lines 2–3 (or lines 9–11) of Algorithm 1 can
be performed by one (or three) SIMD instruction from AVX2 instruction
set. Hence, unlike the B+-tree (or its variants), Algorithm 1 and the
contiguous version do not have loops for branching, but they consist of
an 𝑂(1) number of SIMD and other sequential instructions, irrespective
of the key length.

Comparison with the fusion tree. Both DB+-tree and fusion tree are
B+-trees with 𝑂(1) time branching and log𝑀 𝑁 height, where 𝑁 is the
total number of keys. Whereas each node of the fusion tree requires
a lookup table of 𝑀2 words to get 𝑂(1) branching time, the DB+-tree
does not need a lookup table and requires 𝑂(𝑀) words per node. By
choosing 𝑀 = log2 𝑁 , the fusion tree obtains 𝑂(log𝑁∕ log log𝑁) time
for point search (theoretically beating 𝑂(log𝑁) bound).

We choose the value of 𝑀 as follows, so that the DB+-tree can be
a practical index for main-memory database systems. (In what follows,
‘‘SIMD width’’ means the width of SIMD register in bits, and ‘‘SIMD
parallelism’’ means the number of D-bit slices processed by a single
SIMD instruction). As an example, consider lines 2–3 of Algorithm 1.

• When 𝑀 < key length (in bits): The number of SIMD instructions
to process all D-bit slices is 𝑀/SIMD parallelism. To include all
D-bit positions, the length of a D-bit slice should be 𝑀 bits. Hence,
SIMD parallelism is SIMD width/𝑀 . Combining the two formulas
above, the number of SIMD instructions to process all D-bit slices
is 𝑀2/SIMD width.

• When 𝑀 ≥ key length (in bits): Again the number of SIMD
instructions to process all D-bit slices is 𝑀/SIMD parallelism.
Since the length of a D-bit slice is the key length in this case, SIMD
parallelism = SIMD width/key length. Hence, the number of SIMD
instructions to process all D-bit slices is 𝑀× key length/SIMD
width.

Therefore, the best choice in practice is to choose 𝑀 such that 𝑀2 =
SIMD width. In our experiments, 𝑀 = 16 and SIMD width = 256. So
all D-bit slices are processed by a single SIMD instruction.
6

5. Search and update

For search and update operations, inter-node algorithms (i.e., algo-
rithms between nodes) in the DB+-tree are the same as those in the
B+-tree. However, intra-node algorithms (i.e., algorithms inside a node)
are quite different due to the D-bit information (𝐷𝑖, DS𝑖, and ).

Point search. Given a query key 𝑄, the point search is to find the entry
whose key is 𝑄 in the DB+-tree. It can be done by traversing down the
tree from the root to a leaf 𝑥 which can contain 𝑄 using branching at
each node. Searching leaf 𝑥 is simpler than branching at internal nodes
since we only need equality check to 𝑄.

• Contiguous leaf: We first find 𝑏 such that DS𝑏 = DS(𝑄) (Step 1)
and then compare 𝐾𝑏 and 𝑄 (Step 2). If such 𝑏 does not exist or
𝐾𝑏 is not equal to 𝑄, there is no entry in the tree whose key is 𝑄.

• Non-contiguous leaf (Algorithm 2): Although a key 𝐾𝑖 is equal
to 𝑄, the partial D-bit slice 𝑝DS𝑖 may not be equal to DS(𝑄)
due to unknown bits. Thus, we first find 𝑏 such that XOR𝑏 =
XOR(DS(𝑄), 𝑝DS𝑏) is minimum as in the branch algorithm (Step
1), and compare 𝐾𝑏 and 𝑄 (Step 2). However, we can skip the full
key comparison in Step 2 if there is a bit position where the bit of
DS(𝑄) is 0 and the bit of 𝑝DS𝑏 is 1 since it means that a mismatch
occurs at the position. (Note that bit 1 in 𝑝DS means that its
real value is 1.) This case can be determined by the expression
AND(XOR𝑏, 𝑝DS𝑏) where AND is a bitwise-AND operation. A bit
value of the expression is 1 if and only if the bits of DS(𝑄) and
𝑝DS𝑏 are 0 and 1, respectively. Thus, we perform a comparison of
𝐾𝑏 and 𝑄 if all the bit values of the expression are 0. Step 3 of
Algorithm 1 is not necessary.

Range search. We consider two kinds of range search operations:

• Given two keys 𝑄1 and 𝑄2 (𝑄1 < 𝑄2), RangeSearch1(𝑄1, 𝑄2) is to
find all keys 𝑘 such that 𝑄1 ≤ 𝑘 < 𝑄2 in the index.

• Given a key 𝑄1 and a positive integer 𝑅, RangeSearch2(𝑄1, 𝑅) is
to find the 𝑅 smallest keys larger than or equal to 𝑄1.

Range search can be performed by first searching for 𝑄1 and simply
scanning rightward the leaves until a key larger than or equal to 𝑄2 is
found (RangeSearch1) or 𝑅 keys are reported (RangeSearch2).

Algorithm 3 shows the pseudocode of our algorithm for Range-
Search1. After searching for 𝑄1 (line 1), for every leaf 𝑥 in scanning,
we find the largest integer 𝑏 such that 𝑥.𝐾𝑏−1 < 𝑄2, which can be
done basically using the branching algorithm (lines 2 and 7). If 𝑏 ≤ 𝑥.𝑛,
scanning ends at the leaf 𝑥, and otherwise it continues at the next leaf
(lines 4–8). Note that 𝑄2 may be greater than the largest key 𝑥.𝐾𝑛 in
node 𝑥.

Information Systems 119 (2023) 102287Y. Kwon et al.

r
D
𝑥
𝐷
𝐷
a
b
s

L
D

P
w

I
W
𝑥
n
t

s

𝑟

Algorithm 2: SearchNonContiLeaf(𝑥,𝑄)
Input: a leaf 𝑥 and a query key 𝑄 (𝑥.𝐾0 < 𝑄 ≤ 𝑥.𝐾𝑛)
Output: integer 𝑏 such that 𝑥.𝐾𝑏 = 𝑄 (−1 if such 𝑏 does not

exist)
⊳ Step 1:

1 Find 𝑏 such that XOR𝑏 is minimum among XOR𝑖
= XOR(DS(𝑄), 𝑝DS𝑖) (1 ≤ 𝑖 ≤ 𝑛);

⊳ Step 2:
2 if AND(XOR𝑏, 𝑝DS𝑏) = 0 then
3 Compare 𝑄 and 𝐾𝑏;
4 if 𝑄 = 𝐾𝑏 then return 𝑏;

5 return −1;

Algorithm 3: RangeSearch1(𝑄1, 𝑄2)
Input: two keys 𝑄1 and 𝑄2 (𝑄1 < 𝑄2)
Output: report all keys 𝑘 such that 𝑄1 ≤ 𝑘 < 𝑄2
⊳ Scanning the first leaf.

1 Find the leaf 𝑥 and the integer 𝑎 such that 𝑥.𝐾𝑎−1 < 𝑄1 ≤ 𝑥.𝐾𝑎
(point search);

2 (𝑏,𝐷) ← Branch(𝑥,𝑄2);
3 Report 𝑥.𝐾𝑎,… , 𝑥.𝐾𝑏−1 as outputs;
⊳ Scanning the next leaves.

4 while 𝑏 > 𝑥.𝑛 and 𝑥.𝑛𝑒𝑥𝑡 ≠ nil do
5 𝑥 ← 𝑥.𝑛𝑒𝑥𝑡;
6 if 𝐷 < 𝑥.𝐷𝑚𝑖𝑛 then 𝑏 ← 𝑥.𝑛 + 1;
7 else (𝑏,𝐷) ← Branch(𝑥,𝑄2);
8 Report 𝑥.𝐾1,… , 𝑥.𝐾𝑏−1 as outputs;

To improve the performance, before executing the branching algo-
ithm, we first check if 𝐷 < 𝑥.𝐷𝑚𝑖𝑛 in line 6. By Lemma 5.1, 𝐷 =
-bit(𝑥.𝐾0, 𝑄2) at the time of executing line 6. That is, the (𝐷+1)st bit of
.𝐾0 is 0, and that of 𝑄2 is 1, because 𝑥.𝐾0 < 𝑄2. If 𝐷 < 𝑥.𝐷𝑚𝑖𝑛, the first
+1 bits of 𝑥.𝐾𝑛 are the same as those of 𝑥.𝐾0, and thus 𝑥.𝐾𝑛 < 𝑄2 and
= D-bit(𝑥.𝐾𝑛, 𝑄2). Therefore, we can conclude 𝑏 = 𝑥.𝑛+1, and reports

ll keys in 𝑥 as outputs. Otherwise (i.e., 𝐷 ≥ 𝑥.𝐷𝑚𝑖𝑛), we execute the
ranching algorithm in line 7. This test (𝐷 < 𝑥.𝐷𝑚𝑖𝑛) makes our range
earch particularly fast, as shown in Section 6.

emma 5.1. At the time of executing line 6 of Algorithm 3, 𝐷 is equal to
-bit(𝑥.𝐾0, 𝑄2).

roof. Let 𝑥′ be the previous leaf of 𝑥. When processing the leaf 𝑥′,
e have two cases.

(i) Procedure Branch was executed (line 2 or 7): In 𝑥′, 𝑏 was
𝑥′.𝑛 + 1. Hence, the value 𝐷 returned by Branch is equal to
D-bit(𝑥′.𝐾𝑛, 𝑄2), because the equality D-bit(𝐾𝑏−1, 𝑄) = 𝐷 in
Theorem 4.2(1) holds even for 𝑏 = 𝑛 + 1. Since 𝑥.𝐾0 = 𝑥′.𝐾𝑛,
we have 𝐷 = D-bit(𝑥.𝐾0, 𝑄2).

(ii) Line 6 was executed: Note that 𝐷 did not change in line 6.
Assume inductively (initially by Case (i) and then by repetitions
of Case (ii)) that 𝐷 = D-bit(𝑥′.𝐾0, 𝑄2). By the explanation above
Lemma 5.1, 𝐷 = D-bit(𝑥′.𝐾𝑛, 𝑄2). Since 𝑥.𝐾0 = 𝑥′.𝐾𝑛, 𝐷 =
D-bit(𝑥.𝐾0, 𝑄2). □

nsertion. The insertion operation is to insert a new key 𝑄 to a tree.
e first find the leaf 𝑥 such that 𝑥.𝐾0 < 𝑄 ≤ 𝑥.𝐾𝑛 and store 𝑄 into leaf

. If the leaf 𝑥 is full, 𝑥 is split into two nodes before 𝑄 is stored. The
ode split causes an insertion in the parent of 𝑥 and it is propagated
oward the root until it reaches a node that is not full.

We also update the D-bit information (𝐷𝑖’s, DS𝑖’s, and ). We only
how how to update the information in a non-contiguous leaf 𝑥. (The
7

Fig. 5. Updating partial D-bit slices when inserting 𝑄, where gray boxes indicate
where bits of 𝑝DS𝑄 are from. Note that bits in the red rectangle of (b) were unknown
bits 0 before inserting 𝑄. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

update in a contiguous leaf is obvious and the update in an internal
node is similar to that in a leaf.) First, we consider the case of storing a
new key 𝑄 in node 𝑥 without splitting 𝑥. Let (𝑏,𝐷) be the return value
of Branch(𝑥, 𝑄) and 𝑞 be the integer found in Step 1 of Branch(𝑥, 𝑄).
We assume the general case in which 𝑏 > 1. (We omit the details on the
case that 𝑏 = 1, which is handled exceptionally since the information
on 𝐾0 is not stored in node 𝑥.) To update 𝐷𝑖’s, we need D-bit(𝐾𝑏−1, 𝑄)
and D-bit(𝑄,𝐾𝑏), which can be determined without key comparisons by
Theorem 4.2. D-bit slices are updated as follows.

• Computing the partial D-bit slice 𝑝DS𝑄 of 𝑄 for : For a position
𝑟 in 𝑝DS𝑄, let 𝑟̂ be the position in 𝑄 corresponding to the position
𝑟. If 𝑟̂ < 𝐷, 𝑝DS𝑄[𝑟] is set equal to 𝑝DS𝑞[𝑟]. Otherwise, 𝑝DS𝑄[𝑟] is
set equal to DS(𝑄)[𝑟]. See Example 5.1.

• Updating 𝑝DS𝑖’s for the existing keys: Since a new branch is
created in the trie 𝑇 due to 𝑄, some unknown bits in 𝑝DS𝑖’s must
be changed to 1 by Condition (1) of the partial D-bit slice. If
𝑄[𝐷] = 0, for every 𝐾𝑖 such that D-bit(𝑄,𝐾𝑖) = 𝐷, the bit of 𝑝DS𝑖
corresponding to position 𝐷 must be set to 1. If 𝑄[𝐷] = 1, we do
nothing. See Example 5.2.

Example 5.1. Suppose that 𝑄 = 11010 11001 (DS(𝑄) = 101101) is
inserted in the node of Fig. 2. Then, 𝑞 = 3, 𝐷 = 5, and 𝑏 = 6. That is, 𝑄
is stored between 𝐾5 and 𝐾6. Then, 𝑝DS𝑄 is 100101 (bits at positions
̂ < 𝐷 are underlined), because 100 is from 𝑝DS3 and 101 is from DS(𝑄)
(see Fig. 5(a)). Note that the third bit of 𝑝DS𝑄 is 0 (unknown bit) like
those of 𝑝DS2,… , 𝑝DS5, which satisfies Condition (3) of the partial D-bit
slice.

Example 5.2. Suppose that 𝑄 = 11000 01100 (DS(𝑄) = 100010) is
inserted in the node of Fig. 2. Then, 𝑞 = 4, 𝐷 = 3, 𝑏 = 2, and 𝑄 is stored
between 𝐾1 and 𝐾2. Then, 𝑝DS𝑄 is 100010 and the third bits (unknown
bits) of 𝑝DS2,… , 𝑝DS5 are changed to 1 (see Fig. 5(b)).

If 𝐷 is a new position not in , 𝐷 is added into  and one bit
corresponding to position 𝐷 is inserted in every 𝑝DS𝑖 as follows. We
first set the bit as 0 (unknown bit) without accessing key 𝐾𝑖 and then
perform computing 𝑝DS𝑄 and updating 𝑝DS𝑖’s described above. Note
that although the node 𝑥 has less than 𝑀 keys, the size of  may
be 𝑀 because of dummy positions in . Thus, before adding the new
position in , if  is full (i.e., it has 𝑀 positions), we eliminate dummy
positions from  so that it has only the D-bit positions of 𝑥. For this,
we compute new  from the D-bit positions of 𝑥, and eliminate bits at
dummy positions from the partial D-bit slices.

Information Systems 119 (2023) 102287Y. Kwon et al.

s
s

E
𝑥
p

Next, consider the case of splitting a node 𝑥. In this case, we also
plit D-bit positions and D-bit slices in the node. However, we do not
plit the position set .

xample 5.3. Suppose that we split the node in Fig. 2 into two nodes
1 and 𝑥2 so that 𝑥1 has 𝐾1,… , 𝐾4 and 𝑥2 has 𝐾5,… , 𝐾8. Then, the D-bit
ositions of 𝑥1 are {0, 7, 9} but we set 𝑥1. to be {0, 2, 3, 5, 7, 9}, which

is equal to 𝑥.. Note that positions 2, 3 and 5 are not necessary for
branching at the node 𝑥1. However, we do not eliminate these dummy
positions immediately since eliminating the positions causes updating
D-bit slices. As described above, we eliminate them later when 𝑥1.
contains too many dummy positions.

The insertion may cause to convert the type of nodes. A contiguous
node 𝑥 may be converted to a non-contiguous node when storing 𝑄 in 𝑥.
Moreover, a non-contiguous node 𝑥 may be converted to a contiguous
node when splitting 𝑥.

Overall, our insertion operation requires 𝑂(𝑀) time per node, and
thus it takes 𝑂(𝑀 log𝑀 𝑁) time if node split is propagated toward the
root.

Deletion. The deletion operation is to delete an existing key 𝑄 from the
DB+-tree. We first find the leaf 𝑥 storing the key 𝐾𝑏 such that 𝐾𝑏 = 𝑄,
and delete 𝐾𝑏 from 𝑥. The node 𝑥 is merged with its adjacent sibling
when 𝑥 becomes empty, and deletion is propagated toward the root.

Updating the D-bit information in 𝑥 is quite simple. Assume the
general case in which 𝑛 > 1 and 𝑏 < 𝑛. We delete DS𝑏 and the larger of
𝐷𝑏 and 𝐷𝑏+1 because D-bit(𝐾𝑏−1, 𝐾𝑏+1) = min(𝐷𝑏, 𝐷𝑏+1) by Lemma 4.1.
But, we do not change the position set  even though there is a new
dummy position.

Comparison with HOT. Although our partial D-bit slice is similar
to the sparse partial key of HOT [6], our point search/update/range
search algorithms are quite different from those of HOT because HOT
and DB+-tree are structurally different (i.e., HOT is a trie and DB+-tree
is a B+-tree).

• The point search of HOT (with query 𝑄) traverses from the root
to a leaf node. If 𝑄 exists in the index, it must exist in the arrived
leaf. Thus, one full key comparison confirms the existence of 𝑄
in the arrived leaf. The insertion of HOT (with query 𝑄) first
traverses from the root to a leaf node just like the point search.
However, the arrived node may not be the correct branching point
for inserting 𝑄. Since HOT is a trie-based structure, the branching
point for insertion is on the path from the root to the arrived
leaf. Thus, the insertion algorithm of HOT goes up the tree to the
correct branching point and then inserts 𝑄.

• The DB+-tree is a B+-tree-based structure and thus it is important
to find the correct child to follow in an internal node. The
algorithms of HOT cannot be directly applied to a B+-tree. The
point search algorithm of HOT, if it is applied to a B+-tree, may
not find the correct child in each node and consequently it may
not arrive at the leaf node storing query key 𝑄 even if 𝑄 exists in
the tree. Also for insertion, the arrived leaf using the point search
algorithm of HOT may not be the leaf node where 𝑄 should be
inserted. The branching algorithm of the DB+-tree always finds
the correct child to follow in an internal node. Hence, the point
search and insertion algorithms of the DB+-tree work just like
those of the original B+-tree.

• The range search algorithm of the DB+-tree using our
branching algorithm is significantly faster than those of other
indexes, as shown in the experiments.

Therefore, efficient point search/update/range search algorithms in a
+

8

‘‘B -tree’’ is the main contribution of our paper.
6. Performance evaluation

Since B-tree-based indexes and trie-based indexes have different
characteristics and applicabilities, we conduct two baseline evalua-
tions: one for comparing the DB+-tree with other B+-tree variants, and
another for comparing the DB+-tree with trie variants.

6.1. Experimental settings

We have implemented the DB+-tree in C++ to analyze the perfor-
mance experimentally. All the other indexes to be compared are also
implemented in C++. All the experiments were carried out on an Intel
Xeon-based stand-alone computer with 4 E7-8890 v3 2.5 GHz CPUs,
one TB RAM, running SUSE Linux. The main metric for evaluation was
the throughput of queries processed (in million operations per second)
with a chosen index, averaged over five runs.

6.2. Synthetic and real-world datasets

We used four real-world datasets and four synthetic datasets to
evaluate the DB+-tree and other existing indexes. The datasets used in
the experiments are briefly described below.

6.2.1. Synthetic datasets
Alphanumeric : Each key is a 32 byte string, each byte of which is

selected from {‘0’–‘9’, ‘A’–‘Z’, ‘a’–‘z’} following the Zipf distribu-
tion.

Random220 : Each key is a 32 byte string, each byte of which is
selected from {1–220} following the Zipf distribution.

Customer Name : The keys are obtained from the Name column of
Customer table in the TPC-H (version 2.18.0) [28]. The length
of a key is 18 bytes.

8B Integer : Each key is a 63-bit random integer as in [6].

6.2.2. Real datasets
ERP Data : Each key is a concatenation of three columns whose do-

main cardinalities are 30, 100 000, and 5. The length of a key is
19 bytes.

Wiki Title : Each key is a Wikipedia title.2

Wiki URL : Each key is a Wikipedia link of DBPedia [29].

YAGO : The keys are the yagoFacts from YAGO (version 3.1) [30]. In
Wiki Title, Wiki URL, and YAGO datasets, keys longer than 128
bytes are excluded so that a key is not longer than 128 bytes.

6.2.3. Workload generation
We generated a set of benchmark workloads with Zhang et al.’s

index micro-benchmark [31], which uses the YCSB benchmark [32] to
generate workloads and measures the index performance. We included
a few additional workloads to evaluate the DB+-tree and other indexes
with respect to index construction, point search, range search, and
insert/delete operations.

• The workload for point search is composed of 50% successful
searches and 50% unsuccessful searches. For successful searches,
query keys were generated by YCSB core workload C. For un-
successful searches, query keys were generated by YCSB Insert
operations, and they are all distinct. The workload includes one
million point search queries.

2 http://dumps.wikimedia.org/enwiki/.

http://dumps.wikimedia.org/enwiki/

Information Systems 119 (2023) 102287Y. Kwon et al.

A
a

6

k
s
o
t
s
l
m
T
s
r
s

b
k

6

a
e
o

6

r
7
n

a

v
w
t
(

D
m
n

6

B
q
𝑄

t
a
w
s
i
a
t
n
t
B
s
T
e
(
2
3
D

6

a

• Six workloads are used for range search: the selectivity set to
0.0001%, 0.001%, 0.01%, 0.1%, 1%, or 10%. Each workload
of small ranges (less than or equal to 0.1%) includes 1 million
range queries, and the workloads of larger ranges include 100
thousand and 10 thousand range queries for selectivity 1% and
10%, respectively.

• The workload for insert/delete is composed of 50% insertions and
50% deletions. The workload includes one million insert/delete
queries.

range query is defined by two search keys that specify the beginning
nd the end of a key range (RangeSearch1(𝑄1, 𝑄2)). However, trie-like

indexes do not support such a range query directly. So, for trie-like
indexes, a range query is redefined as a pair of the smallest key and
the number of keys to be retrieved (RangeSearch2(𝑄1, 𝑅)).

.2.4. Index construction
A B+-tree index and its variants can be built by inserting individual

eys or by bulk loading. Since the performance of B+-tree variants is
ensitive to how it has been constructed, we consider two scenarios
f index construction in the experiments. In the first scenario, a B+-
ree index is built by bulk-loading 10 million keys with the fill factor
et to 100%. In the second scenario, a B+-tree index is built by bulk-
oading 10 million keys with the fill factor set to 75% followed by a
ix of 0.5 million random insertions and 0.5 million random deletions.
hese two B+-tree indexes are targeted for read-only workload for a
tatic database and update-heavy workload for a dynamic database,
espectively. In both the scenarios, the resulting B+-tree stores the same
et of keys.

Unlike the B+-tree variants, the trie variants, ART and HOT, have no
ulk-loading code available for them. Thus, they are built by inserting
eys individually in random order.

.3. Baseline evaluation one - with B+-tree variants

In this section, we compare the DB+-tree with a few B+-tree vari-
nts, namely, the STX B+-tree,3 and the pkB-tree [2]. The B+-tree stores
ither the keys or the pointers to the keys in the tree nodes. The details
f the B+-tree variants are described below.

• The B+-tree (key) is an STX B+-tree that stores the keys in the tree
nodes. The size of a tree node is fixed to 256 bytes for short keys
or is increased to guarantee fanout 8 for longer keys.

• The B+-tree (key pointer) is an STX B+-tree that stores key point-
ers. The size of a tree node is fixed to 256 bytes and the fanout
is 16.

• The pkB-tree stores partial keys of two bytes. The size of an
internal node is 384 bytes and the size of a leaf node is 256 bytes.
We implemented the pkB-tree ourselves.

.3.1. Construction of B+-tree variants
Fig. 6(a) compares the DB+-tree and the B+-tree variants with

espect to the time for building an index by bulk loading with 100% and
5% fill factors for the eight datasets, in which the 8B Integer dataset is
ot applicable to the B+-tree (key pointer). Since the DB+-tree and the

pkB-tree require additional data structures and computation for index
construction, their construction time was a little higher than that of the
B+-tree (key pointer). For long keys (Wiki Title, Wiki URL, and YAGO),
however, the DB+-tree was faster than the B+-tree (key).

Fig. 6(b) compares the DB+-tree and the other B+-tree variants with
respect to index sizes for the static and dynamic database scenarios.
Note that the DB+-tree and the pkB-tree store partial keys in their in-
dexes. Due to additional data structures, the index sizes of the DB+-tree
nd the pkB-tree are larger than that of the B+-tree (key pointer).

3 https://github.com/bingmann/stx-btree.
9

r

Table 2
Ratio (%) of contiguous nodes in point search (successful search 50%, unsuccessful
search 50%).

Dataset Internal Leaf

Alphanumeric 82.15 39.94
Random220 93.93 68.31
Customer name 57.58 78.89
8B Integer 99.99 98.33
ERP 44.95 0.00
Wiki Title 34.61 1.41
Wiki URL 13.44 1.47
YAGO 23.10 0.07

6.3.2. Point search
Fig. 7 shows the throughput of the DB+-tree and the other B+-tree

ariants for point search when the ratio of successful searches was 50%,
here node prefetching was applied to all indexes. Overall, the DB+-

ree was 1.3x–2.8x (on average 1.7x) faster than the pkB-tree, 1.9x–3.5x
on average 2.7x) faster than the B+-tree (key pointer) and 1.5x–2.2x

(on average 1.9x) faster than the B+-tree (key) for point search queries.
The DB+-tree built for the static database scenario widened the

throughput gap with the B+-tree variants than the DB+-tree built for
the dynamic database scenario. The DB+-tree outperformed the B+-tree
variants because its branching algorithm was superior running in the
SIMD operational mode and required key pointer dereferencing less
frequently.

We have looked into the effects of key pointer dereferencing and the
ratio of contiguous nodes found on the search paths in point searches
for the static database scenario. Fig. 8 shows that the DB+-tree required
dereferencing key pointers much less frequently than the pkB-tree,
which is one of the main reasons for the superior search performance
of the DB+-tree.

Table 2 reports the ratios of contiguous internal and leaf nodes the
B+-tree encountered on the search paths. It shows that the perfor-
ance of the DB+-tree tended to be higher when the ratio of contiguous
odes was higher among the index nodes encountered during searches.

.3.3. Range search
To evaluate the range search performance of the DB+-tree and the

+-tree variants, we carried out two sets of experiments (one for the
uery selectivity and the other for the data sets) with RangeSearch1(𝑄1,
2). The results are shown in Figs. 9(a) and 9(b), respectively.

Fig. 9(a) shows the relative throughput of the DB+-tree and the B+-
ree variants for range queries with increasing selectivity (i.e., with
n increasing number of keys retrieved). The Alphanumeric dataset
as used for this experiment. The DB+-tree was the best across all the

electivities and the performance gap was widened as the selectivity
ncreased. This is because the DB+-tree was able to determine whether
ll the keys in a leaf node were within the search range by a simple
est examining 𝐷𝑚𝑖𝑛. The blue line in Fig. 9(a) shows the ratio of leaf
odes that were skipped without any key comparison by the simple
est. Fig. 9(b) shows the relative throughput of the DB+-tree and the
+-tree variants for range queries for the four real datasets and the four
ynthetic datasets. The selectivity was fixed to 1% for all the datasets.
he DB+-tree performed better than the B+-tree variants in all datasets
xcept the 8B integer dataset. Specifically, the DB+-tree was 1.0x–1.7x
on average 1.3x) times faster than the pkB-tree, 1.5x–3.6x (on average
.2x) faster than the B+-tree (key pointer), and 0.7x–6.7x (on average
.5x) faster than the B+-tree (key). As the length of keys increased, the
B+-tree outperformed the B+-tree (key) with wider margins.

.3.4. Insert/Delete
Figs. 10(a), 10(b), and 10(c) show the throughput of the DB+-tree

nd the other B+-tree variants for insertions and deletions, when the

atio of insertion was 100%, 50%, and 0%, respectively. For each

https://github.com/bingmann/stx-btree

Information Systems 119 (2023) 102287Y. Kwon et al.

d
m

p
t

Fig. 6. Index construction performance.
Fig. 7. Point search (successful search 50%, unsuccessful search 50%).
Fig. 8. Dereferencing key pointers in point search (successful search 50%, unsuccessful search 50%).
(

d
t

ataset shown in the figures, we measured the throughput of one
illion operations achieved by the indexes in comparison.

Across all the eight datasets, the DB+-tree achieved the best through-
ut. Specifically, the DB+-tree was 1.1x–1.6x (on average 1.4x) faster
han the pkB-tree, 1.9x–3.5x(on average 2.7x) faster than the B+-tree
10

i

key pointer), and 1.3x–2.8x (on average 2.3x) faster than the B+-tree
(key). This superior performance of the DB+-tree for insertions and
eletions was possible due to the partial D-bit slice, which allows us
o perform local changes on the D-bit information in the processing of
nsertions and deletions.

Information Systems 119 (2023) 102287Y. Kwon et al.
Fig. 9. Range search (RangeSearch1(𝑄1, 𝑄2)).
6.4. Baseline evaluation two - with trie variants

The trie and its variants are traditionally considered in-mem-
ory search structures but they are now viable options for main-memory
database systems. In this section, we compare the DB+-tree with ART
and HOT, which are both trie-variant indexes. The source codes of
ART and HOT are obtained from the authors [6,23], and we added
an additional procedure for range search in ART.

6.4.1. Index construction
Fig. 11(a) compares the DB+-tree with the trie variants with respect

to the time for building an index. The DB+-tree was built by bulk
loading with 100% and 75% fill factors. The construction time of the
DB+-tree was approximately 1.8x and 2.7x faster than that of ART
and HOT, respectively. Both ART and HOT were built by inserting
individual keys because there is no bulk-loading code available for
them. Fig. 11(b) shows the index sizes of the DB+-tree and the trie
variants. The index size of HOT was significantly smaller than those of
the other indexes.

6.4.2. Point search
Fig. 12 shows the throughput of the DB+-tree and the trie variants

for point search when the ratio of successful searches was 50%. Overall,
the DB+-tree performed comparably with ART and HOT. The relative
throughput of the DB+-tree for the static database scenario was in the
range from 0.9x to 1.6x in comparison with ART and in the range
from 1.0x to 1.6x in comparison with HOT. The DB+-tree for the
dynamic database scenario underperformed slightly but the throughput
reduction was on average 13 percent of that of the DB+-tree for the
static database scenario.

6.4.3. Range search
To evaluate the range search performance of the DB+-tree and the
11

trie variants, we carried out two sets of experiments (one for the query
selectivity and the other for the data sets) with RangeSearch2(𝑄1, 𝑅).
The results are shown in Figs. 13(a) and 13(b), respectively.

Fig. 13(a) shows the relative throughput of the DB+-tree and the
trie variants for range queries with increasing selectivity (i.e., with an
increasing number of keys retrieved). The Alphanumeric dataset was
used for this experiment. When the selectivity was 0.01% or greater,
the DB+-tree produced significantly higher throughput than ART and
HOT. Specifically, the throughput of the DB+-tree for the static database
scenario was 14x–19x higher than that of ART, and 6x–8x higher than
that of HOT. This result should not be surprising given the inherent
difference in the way a range query is processed by a B+-tree variant
and by a trie variant. Fig. 13(b) shows the relative throughput of the
DB+-tree and the trie variants for range queries for the four real datasets
and the four synthetic datasets. The selectivity was fixed to 1% for all
the datasets. The same trend was observed in this experiment too.

6.4.4. Insert/Delete
Figs. 14(a), 14(b), and 14(c) show the throughput of the DB+-tree

and the trie variants for insertions and deletions, when the ratio of
insertion was 100%, 50%, and 0%, respectively. For each dataset shown
in the figures, we measured the throughput of one million operations
achieved by the indexes in comparison.

ART is structurally closest to the conventional trie and is able
to process insertions quickly. The performance of ART varies greatly
depending on the dataset since its depth varies from dataset to dataset.
For datasets where ART has a small depth, ART is the best and the
DB+-tree is the runner-up. For others, the DB+-tree outperformed the
trie variants with non-negligible margins in most cases.

6.5. Sensitivity analysis

We have conducted sensitivity analyses of the DB+-tree with respect
to four parameters: key length, number of keys, entropy of key values,

and ratio of successful searches. We measured the throughput of point

Information Systems 119 (2023) 102287

12

Y. Kwon et al.

Fig. 10. Insertion and deletion.

Fig. 11. Index construction performance.

Information Systems 119 (2023) 102287Y. Kwon et al.
Fig. 12. Point search (successful search 50%, unsuccessful search 50%).
Fig. 13. Range search (RangeSearch2(𝑄1, 𝑅)).
.

a

l
o
n
t

searches in the static database scenario. For key length, number of keys,
and entropy of key values, the ratio of successful searches was 50%.
For key length, number of keys, and ratio of successful searches, the
Alphanumeric dataset was used.

6.5.1. Key length
Fig. 15(a) shows the throughput of point searches measured with

different key lengths varied from 16 bytes to 128 bytes. The general
trend was that the throughput declined consistently in all indexes
compared, as the key length increased. The DB+-tree was the best
performer in all key lengths.

6.5.2. Number of keys
Fig. 15(b) shows the throughput of point searches measured with

the different numbers of keys indexed varied from 2.5 million keys to
40 million keys. As was expected, the throughput declined consistently
in all indexes compared, as the number of keys indexed increased.
However, the DB+-tree was always the best and more scalable than any
other index compared with.

6.5.3. Entropy of key values
We conduct a sensitivity analysis on the entropy of key values, as

in [2]. When the key values in a byte are in the range [1, 12] (resp.,
13

o

Table 3
Ratio (%) of contiguous nodes in the sensitivity analysis on the entropy of key values

Dataset Internal Leaf

[1, 12] 40.81 2.68
[1, 62] 85.53 37.96
[1, 100] 90.62 49.55
[1, 220] 93.93 68.31

[1, 62], [1, 100], [1, 220]) in the Random220 dataset, the byte entropy for
the generated keys is 3.09 (resp., 4.85, 5.34, 6.11). Fig. 15(c) shows
the throughput of point searches measured with different entropy of
the key values. Among the six indexing methods, the three B+-tree
variants as well as HOT were insensitive to the entropy of key values.
On the other hand, the throughput of the DB+-tree and ART improved
as the entropy increased. The DB+-tree achieved the highest throughput
mong all the six indexing methods.

The DB+-tree has two types of nodes in both internal nodes and
eaves: contiguous and non-contiguous. Since the branching algorithm
f contiguous nodes is simpler and faster than that of non-contiguous
odes, the performance of the DB+-tree increases as the ratio of con-
iguous nodes gets higher in point searches. Table 3 shows the ratio
f contiguous nodes when the entropy of key values varies. When the

Information Systems 119 (2023) 102287Y. Kwon et al.

p
t
w

Fig. 14. Insertion and deletion.
n
s
s
w
s

7

t
a
r
w
O

entropy gets larger, the possibility that distinction bit positions appear
in consecutive 𝑀 (16 in our implementation) bit positions (i.e., the
ossibility that a node becomes a contiguous node) increases. That is, as
he entropy increases, so does the ratio of contiguous nodes (Table 3),
hich in turn improves the performance of the DB+-tree (Fig. 15(c)).

6.5.4. Ratio of successful searches
We also conduct a sensitivity analysis on the ratio of successful

searches. Fig. 15(d) shows the throughput of point searches when the
ratio of successful searches varies from 100% to 0%. Again, the three
B+-tree variants and HOT were insensitive to the ratio of successful
searches, the throughput of the DB+-tree and ART improved as the ratio
decreased, and the DB+-tree got the highest throughput among the six
indexes.

Since the DB+-tree contains the partial information of keys (i.e.,
partial D-bit slices and embedded substrings of keys) in a node, it
scarcely needs key pointer dereferencing when it performs branching
in a node. For a successful search (i.e., the query key exists in the
index), one full key comparison (thus one key pointer dereferencing)
is necessary at the end of the point search to confirm the existence of
the query key in the index. When the ratio of successful searches is
100% in Fig. 16, the number of key pointer dereferencing in the DB+-
tree is slightly over 1 million (which is the number of point searches in
the experiment). That is, the number of key pointer dereferencing other
than full key comparisons is very small in the DB+-tree, when compared
to the pkB-tree. As the ratio of successful searches decreases, so does the
number of key pointer dereferencing in the DB+-tree (Fig. 16), which
increases the performance of the DB+-tree (Fig. 15(d)). Especially when
the ratio of successful searches is 0% (i.e., insertions and many cases of
range searches), the performance of the DB+-tree is much better than
the pkB-tree.
14
6.6. DB+-tree as in-memory index

B+-trees have been widely used in database systems due to its
proven performance with disk storage. Since we propose the DB+-tree
as an in-memory index, it has different parameters than the B+-tree
(see [10] for an initial work of in-memory index structures). The size of
a DB+-tree node is either 256 or 384 bytes, which are small multiples (4
or 6) of the cache line size (64 bytes in our implementation). With the
use of data prefetching instructions, 4 or 6 consecutive cache lines can
be accessed without much additional latency compared with a random
single cache line access. Thus, the DB+-tree can achieve fast branching
with a limited memory access cost, which is a dominant cost factor of
in-memory index structures. Such data prefetching is also used for other
in-memory indexes (e.g., HOT).

When compared to trie-based indexes such as HOT, B+-trees have
ice properties which the DB+-tree can benefit from in an in-memory
etting. For example, (1) fixed node sizes make it easy to handle
torage space management, and (2) every leaf node has the same depth,
hich provides stable search performance as well as effective random

ampling for approximate query processing [33,34]. Since the DB+-tree
has the same tree structure as the B+-tree, it shares these properties.

. Conclusion

In this paper, we have proposed a novel branching algorithm in
he B+-tree which can be implemented in an 𝑂(1) number of SIMD
nd other sequential instructions, irrespective of the key length. The
esulting variant of the B+-tree, called the DB+-tree, has fast branching,
hich leads to fast point search, range search, and update operations.
ur experiments show that the DB+-tree is the best performer among

Information Systems 119 (2023) 102287

15

Y. Kwon et al.

Fig. 15. Sensitivity analysis.

Fig. 16. Key pointer dereferencing in point search (varying the ratio of successful searches).

Information Systems 119 (2023) 102287Y. Kwon et al.

h

D

c
i

D

A

&
K
A
N
K
p
N

R

B-tree-based indexes, and it is comparable to trie-based indexes HOT
and ART.

Extending the DB+-tree to a disk-based B+-tree to handle datasets
larger than main memory [35] is a future work. That is, if a disk page of
the B+-tree is accessed, the disk page is copied to an in-memory buffer.
From the page in the buffer, we can build a DB+-subtree. As more and
more disk pages are accessed, many DB+-subtrees are built in memory,
which are part of one big DB+-tree. The DB+-tree built as above can
ave better performances than B+-trees.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

The authors do not have permission to share data.

cknowledgments

Lee, Nam and Park were supported by Institute for Information
communications Technology Promotion (IITP) grant funded by the

orea government (MSIT) (No. 2018-0-00551, Framework of Practical
lgorithms for NP-hard Graph Problems). Na was supported by the
ational Research Foundation of Korea (NRF) grant funded by the
orea government (MSIT) (No. 2020R1F1A1068873). Moon was sup-
orted by National Research Foundation (NRF) of Korea (Grant No.
RF-2020R1A2C1010358).

eferences

[1] R. Bayer, E.M. Mccreight, Organization and maintenance of large ordered
indexes, Acta Inform. 1 (3) (1972) 173–189.

[2] P. Bohannon, P. Mcllroy, R. Rastogi, Main-memory index structures with fixed-
size partial keys, in: Proceedings of the 2001 ACM SIGMOD International
Conference on Management of Data, 2001, pp. 163–174.

[3] D.E. Ferguson, Bit-tree: A data structure for fast file processing, Commun. ACM
35 (6) (1992) 114–120.

[4] M.L. Fredman, D.E. Willard, Blasting through the information theoretic barrier
with fusion trees, in: Proceedings of the 22nd Annual ACM Symposium on Theory
of Computing, 1990, pp. 1–7.

[5] M.L. Fredman, D.E. Willard, Surpassing the information theoretic bound with
fusion trees, J. Comput. Syst. Sci. 47 (3) (1993) 424–436.

[6] R. Binna, E. Zangerle, M. Pichl, G. Specht, V. Leis, HOT: A height optimized
trie index for main-memory database systems, in: Proceedings of the 2018 ACM
SIGMOD International Conference on Management of Data, 2018, pp. 521–534.

[7] T.J. Lehman, M.J. Carey, A study of index structures for main memory database
management systems, in: Proceedings of the 12th International Conference on
Very Large Data Bases, 1986, pp. 294–303.

[8] R. Bayer, K. Unterauer, Prefix B-trees, ACM Trans. Database Syst. 2 (1) (1977)
11–26.

[9] J. Rao, K.A. Ross, Cache conscious indexing for decision-support in main
memory, in: Proceedings of the 25th International Conference on Very Large
Data Bases, 1999, pp. 78–89.

[10] J. Rao, K.A. Ross, Making B+-trees cache conscious in main memory, in:
Proceedings of the 2000 ACM SIGMOD International Conference on Management
of Data, 2000, pp. 475–486.

[11] S. Chen, P.B. Gibbons, T.C. Mowry, Improving index performance through
prefetching, in: Proceedings of the 2001 ACM SIGMOD International Conference
on Management of Data, 2001, pp. 235–246.
16
[12] S. Chen, P.B. Gibbons, T.C. Mowry, G. Valentin, Fractal prefetching B+-trees:
Optimizing both cache and disk performance, in: Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data, 2002, pp. 157–168.

[13] W. Zhang, Z. Yan, Y. Lin, C. Zhao, L. Peng, A high throughput B+tree for SIMD
architectures, IEEE Trans. Parallel Distrib. Syst. 31 (3) (2020) 707–720.

[14] Z. Yan, Y. Lin, L. Peng, W. Zhang, Harmonia: A high throughput B+tree for GPUs,
in: Proceedings of the 24th Symposium on Principles and Practice of Parallel
Programming, 2019, pp. 133–144.

[15] J.J. Levandoski, D.B. Lomet, S. Sengupta, The Bw-tree: A B-tree for new
hardware platforms, in: Proceedings of the 29th International Conference on
Data Engineering, 2013, pp. 302–313.

[16] G.-J. Na, S.-W. Lee, B. Moon, Dynamic in-page logging for B-tree index, IEEE
Trans. Knowl. Data Eng. 24 (7) (2012) 1231–1243.

[17] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A.D. Nguyen, T. Kaldewey, V.W.
Lee, S.A. Brandt, P. Dubey, FAST: Fast architecture sensitive tree search on
modern CPUs and GPUs, in: Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, 2010, pp. 339–350.

[18] T. Yamamuro, M. Onizuka, T. Hitaka, M. Yamamuro, VAST-tree: A vector-
advanced and compressed structure for massive data tree traversal, in:
Proceedings of the 15th International Conference on Extending Database
Technology, 2012, pp. 396–407.

[19] R. De La Briandais, File searching using variable length keys, in: IRE-AIEE-ACM
Western Joint Computer Conference, 1959, pp. 295–298.

[20] D.R. Morrison, PATRICIA—Practical algorithm to retrieve information coded in
alphanumeric, J. ACM 15 (4) (1968) 514–534.

[21] M. Boehm, B. Schlegel, P.B. Volk, U. Fischer, D. Habich, W. Lehner, Efficient
in-memory indexing with generalized prefix trees, in: Proceedings of the 14th
BTW Conference on Database Systems for Business, Technology, and Web, 2011,
pp. 227–246.

[22] T. Kissinger, B. Schlegel, D. Habich, W. Lehner, KISS-tree: Smart latch-free
in-memory indexing on modern architectures, in: Proceedings of the 18th
International Workshop on Data Management on New Hardware, 2012, pp.
16–23.

[23] V. Leis, A. Kemper, T. Neumann, The adaptive radix tree: ARTful indexing for
main-memory databases, in: Proceedings of the 29th International Conference on
Data Engineering, 2013, pp. 38–49.

[24] V. Leis, F. Scheibner, A. Kemper, T. Neumann, The ART of practical synchroniza-
tion, in: Proceedings of the 12th International Workshop on Data Management
on New Hardware, 2016, pp. 1–8.

[25] H. Zhang, H. Lim, V. Leis, D. Andersen, M. Kaminsky, K. Keeton, A. Pavlo,
SuRF: practical range query filtering with fast succinct tries, in: Proceedings of
the 2018 ACM SIGMOD International Conference on Management of Data, 2018,
pp. 323–336.

[26] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms,
third ed., MIT Press, 2016.

[27] P. van Emde Boas, Preserving order in a forest in less than logarithmic time, in:
Proceedings of the 16th Annual Symposium on Foundations of Computer Science,
1975, pp. 75–84.

[28] M. Poess, C. Floyd, New TPC benchmarks for decision support and web
commerce, ACM SIGMOD Rec. 29 (4) (2000) 64–71.

[29] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, Z. Ives, Dbpedia: A
nucleus for a web of open data, in: Proceedings of the 6th International Semantic
Web Conference, 2007, pp. 722–735.

[30] F.M. Suchanek, G. Kasneci, G. Weikum, Yago: A Core of Semantic Knowledge,
in: 16th International Conference on the World Wide Web, 2007, pp. 697–706.

[31] H. Zhang, D.G. Andersen, A. Pavlo, M. Kaminsky, L. Ma, R. Shen, Reducing
the storage overhead of main-memory OLTP databases with hybrid indexes, in:
Proceedings of the 2016 ACM SIGMOD International Conference on Management
of Data, 2016, pp. 1567–1581.

[32] B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, R. Sears, Benchmarking
cloud serving systems with YCSB, in: Proceedings of the 1st ACM Symposium
on Cloud Computing, 2010, pp. 143–154.

[33] F. Olken, D. Rotem, Random sampling from B+ trees, in: Proceedings of the 15th
International Conference on Very Large Data Bases, 1989, pp. 269–277.

[34] Z. Zhao, D. Xie, F. Li, AB-Tree: Index for concurrent random sampling and
updates, in: Proceedings of the 48th International Conference on Very Large
Data Bases, 2022, pp. 1835–1847.

[35] V. Leis, M. Haubenschild, A. Kemper, T. Neumann, LeanStore: In-memory data
management beyond main memory, in: Proceedings of the 34th International
Conference on Data Engineering, 2018, pp. 185–196.

http://refhub.elsevier.com/S0306-4379(23)00123-0/sb1
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb1
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb1
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb2
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb2
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb2
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb2
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb2
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb3
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb3
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb3
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb4
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb4
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb4
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb4
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb4
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb5
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb5
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb5
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb6
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb6
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb6
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb6
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb6
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb7
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb7
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb7
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb7
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb7
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb8
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb8
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb8
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb9
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb9
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb9
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb9
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb9
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb10
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb10
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb10
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb10
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb10
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb11
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb11
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb11
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb11
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb11
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb12
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb12
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb12
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb12
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb12
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb13
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb13
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb13
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb14
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb14
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb14
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb14
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb14
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb15
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb15
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb15
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb15
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb15
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb16
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb16
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb16
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb17
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb17
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb17
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb17
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb17
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb17
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb17
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb18
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb18
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb18
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb18
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb18
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb18
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb18
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb19
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb19
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb19
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb20
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb20
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb20
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb21
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb21
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb21
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb21
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb21
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb21
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb21
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb22
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb22
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb22
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb22
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb22
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb22
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb22
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb23
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb23
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb23
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb23
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb23
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb24
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb24
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb24
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb24
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb24
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb25
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb25
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb25
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb25
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb25
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb25
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb25
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb26
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb26
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb26
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb27
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb27
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb27
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb27
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb27
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb28
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb28
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb28
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb29
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb29
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb29
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb29
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb29
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb30
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb30
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb30
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb31
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb31
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb31
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb31
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb31
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb31
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb31
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb32
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb32
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb32
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb32
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb32
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb33
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb33
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb33
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb34
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb34
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb34
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb34
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb34
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb35
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb35
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb35
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb35
http://refhub.elsevier.com/S0306-4379(23)00123-0/sb35

	DB+-tree: A new variant of B+-tree for main-memory database systems
	Introduction
	Preliminaries
	Related Work

	Overview of new B+-tree
	Branching Algorithm
	Basic Algorithm
	Optimizations
	Implementation Details

	Search And Update
	Performance Evaluation
	Experimental Settings
	Synthetic and Real-World Datasets
	Synthetic Datasets
	Real Datasets
	Workload Generation
	Index Construction

	Baseline evaluation one - with B+-tree variants
	Construction of B+-tree variants
	Point Search
	Range Search
	Insert/Delete

	Baseline Evaluation Two - with Trie Variants
	Index Construction
	Point Search
	Range Search
	Insert/Delete

	Sensitivity Analysis
	Key Length
	Number of Keys
	Entropy of Key Values
	Ratio of Successful Searches

	DB+-tree as in-memory index

	Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

